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It is demonstrated that a one-dimensional gaussian random walk (GRW) pos-
sesses an underlying structure in the form of random oscillatory modes. These
modes are not sinusoids, but can be isolated by a well-defined procedure. They
have average wavelengths and amplitudes, both of which can be determined by
experiments or by theoretical calculations. This paper reports such determina-
tions by both methods and also develops a theory that is ultimately shown to
agree with experiments. Both theory and simulations show that the average
wavelength and the average amplitude scale with the order of the mode in
exactly the same way that the modes of the well-known Weierstrass fractal
scale with mode order. This is remarkable since the wave generated by the
Weierstrass function, W(x)=;.

m=1(1
a)m cos(gmx), is fully determined for the

variable x whereas the GRW is stochastic. By increasing the size of the steps in
the GRW, it is possible to selectively remove the fastest modes, while leaving the
remaining modes almost unchanged. For a GRW, the parameters corresponding
to a and g in the Weierstrass function are found to be 2.0 and 4.0, respectively.
These values are independent of the variance associated with the GRW. Appli-
cation of the random modes is reserved for a later paper.

KEY WORDS: Random walks; Brownian motion; probability theory; lattice
statistical mechanics.

1. RANDOM WALK AS A FRACTAL

It has been recognized for some time that a random walk (RW) is a
fractal. (1) Without characterizing it as such, Perrin in 1909 (2) identified
many of the features of the path of a Brownian particle as those that would
identify a fractal. A well-known fundamental property of fractals is self-
similarity or affine similarity that leads to scaling processes described by
power laws.



The purpose of this paper is to (i) demonstrate that there are well-
defined random modes associated with a random process, (ii) to prescribe a
method for finding these modes, and (iii) to describe some of the properties
of such modes. We will focus on a gaussian random walk (GRW), a
process that can be associated with Brownian motion. In later papers we
will consider more general random processes. Self-similarity in a gaussian
random walk is most simply described by ‘‘coarse graining’’ the walk, a
simple renormalization procedure that falls under the heading of renor-
malization group (RG) theory, and which can obscure the finer details of
the walk to any desired degree.

In a GRW the probability that a vector step lies in the volume element
dr is given by

p(r)=(2ps2
o)−d/2 exp 3−

(|r2|)
2s2

o

4 (1)

where d is the dimensionality of the walk and the constant s2
o is its

variance. One can coarse grain the walk by redefining the vector step as the
sum of n original vector steps, i.e.,

rŒ= C
n

i=1
ri (2)

where ri represents the ith intermediate step. With the probability density
of the ith intermediate step prescribed by Eq. (1), it is easy to show (3) that
the probability for the volume element drŒ is

p(rŒ)=(2pns2
o)−d/2 exp 3−

(|rŒ
2|)

2ns2
o

4 (3)

Writing s2 in place of ns2
o converts Eq. (3) into an equation of the same

form as Eq. (1), the only difference being the new variance. Thus the
rescaled path of the GRW is self-similar to the original path. What has
been lost is much information about the more finely scaled original path.
Of course this is what RG theory usually does in an attempt to achieve
convergence at a ‘‘fixed point,’’ (4) but this kind of suppression of detail is
not our immediate interest. What we shall do is to prove that even a GRW
contains distinct, discrete and well-defined oscillatory modes that scale with
affine similarity. (5) It can be shown that any value of n \ 2 in Eq. (2) pre-
serves the gaussian distribution of the step sizes, but for d=1, one particu-
lar value of n is favored (n=4) because it removes the fastest vibrational
mode from the random walk while at the same time leaving the frequencies
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and amplitudes of all the remaining modes relatively unchanged. In this
paper we will not attempt an application of these modes, but rather limit
our consideration to the relevant scaling laws that are justified by experi-
ment and some beginning theory. The modes are, of course, ‘‘average’’
quantities. They have average amplitudes and average wavelengths and it is
these average quantities that satisfy the scaling laws. Thus the simple
(almost obvious) scaling exemplified by Eqs. (1) through (3) can be
accompanied by a much more detailed scaling that contains particular
information about the GRW.

Of course a thoroughly random process can be Fourier analyzed in a
straightforward manner into an infinite set of sinusoidal modes, but little
understanding is gained from such a decomposition. The representation is
purely formal since sinusoids have no natural connection with the process
causing the random walk and so the oscillatory modes of interest to us will
not be sinusoids. As a step towards understanding these modes, it is useful
to examine what is believed to be the earliest formalization of a fractal,
namely the Weierstrass series (5, 6) given by

W(x)= C
.

m=1

11
a
2m

cos(gmx) (4)

where x can be regarded as time or a length. If it is regarded as time, then
gm becomes an angular frequency wm. If it is regarded as a length, then
g−m=l̄m/2p where l̄m is now a wavelength. Here a and g are positive
integers greater than unity and a=gH with 0 < H < 1. The Weierstrass
function is remarkable in that it is continuous while not having a derivative
anywhere. Fig. 1 plots a segment of the Weierstrass series for the case
g=4.0 and H=0.5. It is to be noted that W(x) is a fully deterministic
function of x although a rough glance at Fig. 1 may give the opposite
impression. To emphasize this last point we plot, in Fig. 2, a segment of a
simulated one-dimensional GRW in which the ordinate is the one-dimen-
sional position of the walker and the abscissa is a length measured in the
number of steps, i.e., the length of the walk. The plot is for a GRW with
standard deviation equal to 0.0005. This choice of standard deviation is not
important and it is not related to the choice of g=4.0 and H=0.5 in
Eq. (4). These particular values of g and H come about, below, from our
analysis of the oscillatory modes of the GRW.

What is important is the striking similarity between the plots in the
two figures, one of a curve based on a deterministic formula, and the other,
a plot of a curve that is completely random. In the next section, we describe
the procedure for finding the above-mentioned modes.
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Fig. 1. Plot of the first 40 terms of the Weierstrass function (Eq. (4)) with a=2.0 and
b=4.0 plotted over the range x=0.0 to 3.0.

Fig. 2. Plot of a portion of a GRW simulation with average step size=0.0 and standard
deviation=0.0005 over the range 60000 steps to 80000 steps.
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2. ISOLATING THE MODES

Consider a one dimensional RW of infinite length. We can generate
such a walk on a computer using a table of random numbers to determine
the lengths of the individual steps. The total number of steps completed by
the walker at a given time can be taken as a measure of that time, i.e., the
time consumed by a step is constant. The RW can be plotted, as in Fig. 2,
showing the position of the walker as the ordinate and the number of steps,
or the time, as the abscissa. This sort of plot will show peaks and valleys,
where a peak is always followed by a valley and vice versa. Every peak will
be defined to be a ‘‘first order’’ peak and every valley, defined to be a ‘‘first
order’’ valley. These peaks and valleys will be denoted by +1 and − 1,
respectively. The distance between two successive peaks will be regarded as
a wavelength in much the same way as the distance between two crests of a
sinusoidal wave may be defined as the wavelength. Alternatively, the dis-
tance between two valleys may be regarded as a wavelength in much the
same way as the distance between two troughs of a sinusoid is a wave-
length. Of course, the wavelength of a monochromatic sinusoid is a well-
defined constant, whereas, in a particular random walk, the distance
between two peaks (or between two valleys) will vary considerably.

On the other hand a random walk will exhibit an average first order
wavelength. As a special example, consider a RW consisting of steps with
the probability 1/2 of being in the forward direction and 1/2 of being in
the backward direction. Then it is easy (see below) to show that the average
distance between peaks will be 4 steps, so that the average wavelength is 4.

Now we will generate a set of ‘‘second order’’ peaks by a coarse grain-
ing process. We examine all the peaks in a RW and identify those that are
higher than their nearest neighbor peaks. This is the set of second order
peaks. We can identify second order valleys in the similar way (they are
lower than their nearest neighbor valleys). We can then plot the walk
showing only second order peaks and valleys (a walk more coarse grained
than the first order walk). This second order walk will also exhibit an
average wavelength, namely the average distance between two peaks, which
will also be same as the average distance between two valleys. In the second
order process there are some exceptions that will have to be noted such as
the possibility that two successive second order peaks may not be separated
by a second order valley. However, in this first description of the method
we will ignore such complications. Also, in the case of constant and finite
step length, a modest departure from the GRW definition, several first
order peaks in succession may have exactly the same height while the
sequence is bounded on both sides by lower peaks. The second order peaks
and valleys will be denoted by +2 and − 2, respectively.
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Third order peaks and valleys can be determined using the second
order peaks and valleys. Fourth order peaks and valleys can then be
determined using the third order objects. The fifth order can be determined
from the fourth, and so on. Clearly, the process of coarse graining can in
principle be continued in this way indefinitely. Only if the random walk
path contains a finite number of steps, will there be an upper limit on the
‘‘wave order’’ for a particular RW.

In order to demonstrate this process, we need an example of a RW.
It is convenient to obtain such an ‘‘experimental’’ example from exhaustive
simulations of such walks in which the step probabilities are determined by
various random number generators. We have also made use of published
tables of random numbers obtained from the decay of radioactive elements
to generate experimental random walks. Alternatively, one could attempt a
theoretical analysis that would yield the properties of the random modes.
In this paper, we develop such a rigorous theoretical analysis for a special
random walk consisting of steps where each one has the same amplitude.
Only the direction (i.e., up or down) varies randomly. This is not quite a
GRW, but in the appropriate limit, it is. We have conducted simulations of
walks having constant step amplitude so that our theoretical analysis could
be compared with an exact experimental example. Many of the conclusions
derived from the case with constant step length are applicable to a true
GRW (i.e., the existence of random modes) and have been confirmed
experimentally in GRW’s as well. In several of the following sections of
this paper we present the theory for the constant step length walk. We
compare theory and experiment. Also certain scaling features of the walk
are compared with similar features of the Weierstrass series. Such a com-
parison of features is also made for the simulated true GRW and the
Weierstrass function.

3. EVALUATION OF THE WAVELENGTH OF THE FIRST ORDER

RANDOM MODE

As we have indicated, in order to clarify the above process of coarse
graining, it is useful to perform an exact probability analysis on a random
walk that is simpler than a GRW, by replacing the gaussian distributed
length of each step with a length that is constant. Only the sign of the step’s
length will be allowed to vary. We will ignore, for the time being, the case
where two second or higher order peaks are not separated by an interven-
ing valley and the similar case of two valleys not having an intervening
peak. A more immediate problem, caused by each step having an equal
length, is that neighboring peaks or valleys may (as we mentioned earlier)
also have identical heights or depths. For a GRW, where the step length is
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a continuous random variable, peaks with exactly the same height form
a set of measure zero. However, in some situations already mentioned,
because of practical limits on experimental measurement in a true GRW or
because we deal explicitly with a walk having a constant step size, it is
possible and even probable that neighboring peaks (or valleys) may have
exactly the same height. For instance, we must deal with this problem when
a sequence of peaks have the same height and are higher than the peak that
immediately precedes the sequence as well as the peak that immediately
follows it. In this case, the entire sequence is treated as a single high order
peak. A similar treatment is accorded to a sequence of valleys of equal
depth that are immediately preceded and immediately followed by valleys
that are of lesser depth.

In this section we will evaluate the wavelength of a first order random
mode. It is convenient to begin our analysis with an unsymmetrical walk in
which the probability of a forward step is p1 and that of a backward is q1.
Later, we shall set p1=q1=1/2, so as to obtain the results for a symme-
trical walk. In order to identify a first order peak we must have a run of at
least one backward step, followed by a run of n forward steps (n \ 1), and
finally followed by a run of at least one backward step. The probability of
this arrangement is q1 pn

1q1 and since the peak can be composed of any
number of steps, we must sum over the probabilities of all possible n. Then
the probability of a first order peak is

p (1)= C
N − 2

n=1
q1 pn

1q1=q2
1 C

N − 2

n=1
pn

1=q2
1
5p1 − pN − 1

1

1 − p1

6 (5)

where N is the number of steps in the walk. For the limit N Q ., this
becomes

p (1)=
q2

1p1

1 − p1
(6)

Eq. (6) is also the fraction of steps that mark the beginning of a peak (i.e.,
the fraction of steps that form a valley) and its reciprocal must be the
average distance between peaks or the average ‘‘wavelength.’’ Thus, since
the distance between peaks corresponds to a wavelength, for the symme-
trical walk with p1=q1=1/2, the average wavelength is

l1=
1 − p1

q2
1p1

=
1 − 1/2
(1/2)3 =4 (7)
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a result mentioned earlier. The analysis for the second order average wave-
length is somewhat more involved, but still simple. The method is described
in the following section.

4. EVALUATION OF THE WAVELENGTH OF THE SECOND ORDER

RANDOM MODE.

We need to know the probability that a +1 peak, immediately follow-
ing another +1 peak, is higher than this previous peak, as well as the
probability that a +1 peak, immediately following another +1 peak, is
lower than the previous peak. Both of these probabilities are dependent on
the probability that a +1 peak immediately following another +1 peak
has exactly the same height. From the probabilities of these three out-
comes, it is possible to calculate the probability of any second order peak
and hence, its frequency in the random walk. A+1 peak can be formed by
a single downward step at the end of a run of upward steps. There may be
more than one downward step, but there must be at least one. Let m
represent the number of downward steps in excess of the one that is neces-
sary to form a peak. The next peak is formed by n upward steps, with
n > 0, followed by a single downward step. This is illustrated in Fig. 3.
Every path that forms a peak following another peak will be a special case
of Fig. 3. So, in general, the probability of any path where a peak follows
another peak is equal to

pn
1qm+1

1 (8)

Fig. 3. Plot of a segment of a random walk showing a series of +1 peaks. In the downward
sequence that forms each peak, the first step has been drawn as a solid line. The remainder of
each downward sequence plus the upward sequence that follows it has been drawn with
dashes since its lengths is variable. The vertical lines mark the location one step past each peak
in the random walk and three complete first order cycles are displayed.
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where the values of m and n depend on the specific path. The quantity Q1e,
which we use to represent the probability for the case where the following
+1 peak is the same height as the previous +1 peak, has the value

Q1e= C
.

m=0
pm+1

1 qm+1
1 =

(1 − p1)(1 − q1)
1 − p1q1

(9)

The quantity Q1+, which we use to denote the probability for the case
where the following+1 peak is higher than the previous +1 peak, is equal
to

Q1+= C
.

m=0
C
.

n=m+2
pn

1qm+1
1 =5 p1

1 − p1

6 Q1e (10)

Finally, the quantity Q1 − , which we define to be the probability for the
case where the following +1 peak is lower than the previous +1 peak, is
calculated to be

Q1 − = C
.

m=1
C
m

n=1
pn

1qm+1
1 =5 q1

1 − q1

6 Q1e (11)

The sum of Eqs. (9), (10) and (11) represents the probability of all possible
sequences of two peaks and is therefore equal to unity, independent of the
specific value of p1 (or q1), as it should be.

From the definition of a second order peak given in Section 2, it
follows that the probability of a second order peak is the product Q1+Q1 − .
This represents a sequence of three +1 peaks with the first and third peaks
both lower than the middle peak. This is one type of second order peak,
but, according to our earlier definition, it is not the only possibility. Other
types involve the middle peak repeating one or more times with exactly the
same height. We denote the total probability of all possible second order
peaks as b−1

2 , and it follows that

b−1
2 =Q1+Q1 −

5 C
.

m=0
Qm

1e
6=Q1+Q1 −

5 1
1 − Q1e

6 (12)

For p1=q1=1/2, Q1e=Q1+=Q1 − =1/3 and b−1
2 =1/6. This means that,

on average, one peak out of every six +1 peaks is a +2 peak (i.e., l2=6
first order peaks). Then, since a first order peak occurs on the average
every four steps, a second order peak will occur on the average every 24
steps (i.e., l2=24 steps).
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5. EVALUATION OF THE WAVELENGTH OF THE THIRD ORDER

RANDOM MODE

Third order peak wavelength is determined by the probability of a
second order peak being either higher or lower than the previous second
order peak. These latter two probabilities can be calculated in the following
manner. The probability that a +1 peak is one step higher than the pre-
vious +1 peak is p1Q1e. The probability that a +1 peak is two steps higher
than the previous +1 peak is p2

1Q1e. Adding the probabilities of this form
for all possible heights obviously gives Eq. (10). Replacing p1 with q1 gives
the corresponding probabilities for a succeeding +1 peak that is lower and
summing all the declining peak probabilities gives Eq. (11). Now, consider
a ‘‘staircase’’ sequence of three succeeding +1 peaks, with the third peak
being equal to or greater in height than the second peak and the second
peak being equal to or greater in height than the first peak. The probability
for a sequence like this has the form p s

1Q2
1e where s is difference in height

between the last (third) peak and the first peak. For a similar sequence of
four +1 peaks, the probability has the form p s

1Q3
1e where s is again the dif-

ference in height between the last (fourth) peak and the first peak. The
general probability for a sequence of +1 peaks is

pp(s, t)=x s
1Q t

1e (13)

where s \ 1 is the total height change over the sequence and t+1 is the
total number of peaks in the sequence. When x1=p1, Eq. (13) applies to
sequences with increasing peak heights and when x1=q1, Eq. (13) applies
to sequences with decreasing peak heights.

Eq. (13) must still be multiplied by a combinatorial factor to convert it
into a more useful probability. This combinatorial factor allows for the fact
that in general the s excess steps may be distributed over the peaks in
several different ways and that each such distribution (having the same
number of peaks and the same number of excess steps) is equally likely. Let
the combinatorial factor be represented by f(s, t), then

f(s, t)= C
s

n=0
f(n, t − 1)=

(s+t − 1)!
s!(t − 1)!

(14)

where s \ 0 and t \ 1. Indeed Eq. (14) is the combinatorial function asso-
ciated with Bose-Einstein statistics. (7) The expression [1/(1 − x)] t consti-
tutes a generating function for f(s, t), and

C
.

s=0
f(s, t) x s=

1
(1 − t)!

d t − 1

dx t − 1
5 x t − 1

1 − x
6=5 1

1 − x
6 t

(15)
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Fig. 4. Plot of a segment from the path of a random walk showing a +2 peak following
another +2 peak. The dashed part of the path is variable. The portion of the path between
the vertical lines represents one complete 2nd. order cycle.

for t \ 1. Using this relationship, the probabilities for the occurrence of a
sequence of t+1 increasing peaks of any height and t+1 decreasing peaks
of any height are found to be, respectively, (Q1++Q1e) t and (Q1 − +Q1e) t.

The segment of a random walk path proceeding from the top of a +2
peak to the top of the next +2 peak can have one of several forms (see
Fig. 4). By definition, the first +2 top in the segment must be followed by
at least one +1 top that is lower in height. There may be a sequence of
several +1 tops following this +2 top, each one lower than the previous
peak, but there must be at least one +1 top following the +2 top. In order
to have a following +2 peak, the declining sequence of +1 peaks must be
followed by at least one +1 peak that is higher than the last peak in the
declining sequence. Instead of only one increasing +1 peak, there could be
a sequence of +1 peaks, each one higher than the preceding peak, with the
first peak higher than the last peak in the declining sequence. The simplest
path between the two +2 peaks is, of course, one lower +1 peak followed
by one higher +1 peak. The general probability for the occurrence of a
segment of any type proceeding from a +2 peak to a succeeding +2 peak
can be written in the form

Q1 − (Q1 − +Q1e)m Q1+(Q1++Q1e)n (16)

The structure represented by this equation should be clear. The terms
in parentheses are the probabilities of the declining and increasing sequen-
ces of +1 peaks, containing m+1 and n+1 peaks, respectively. The initial
Q1 − factor is the probability that the first+2 peak is indeed followed by a
lower +1 peak. The Q1+ factor is the probability that the second+2 peak
is higher than the lowest +1 peak. Thus the product of the probabilities in
Eq. (16) is just the probability for the occurrence of a segment of any type
proceeding from a +2 peak to the succeeding +2 peak, i.e., it is the prob-
ability that we are seeking. The probability of the simplest or minimum
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path has m=n=0, which is the probability that a +1 peak is followed by
a lower +1 peak multiplied by the probability that a +1 peak is followed
by a higher +1 peak. This path has the fewest number of peaks, not
necessarily the fewest number of steps. In general, the downward portion of
the wave will consist of a sequence of m+1 first order peaks where each
peak is equal to or lower in height than the previous one and m \ 0. The
upward portion of the path consists of a sequence of n+1 first order peaks
where each one is equal to or higher than the previous peak and n \ 0. The
end of the upward portion of the path is a second order peak, since it is
assumed to be followed immediately by a downward segment in the
random walk (which is not included in Eq. (16)). Eq. (16) is very similar to
Eq. (8). Summing over all values of m and n (which here represent the
number of peaks) in Eq. (16) is unity, as it should be, since any particular
segment is certain to be one of these segments between two+2 peaks (for
the first order equivalents, see Eqs. (9), (10), and (11)).

It is convenient to collect all the terms in Eq. (16) that correspond to
the same difference of heights between the +2 peaks. This leads to the
quantity

sp1 − (m) sp1+(n) (17)

where sp1 − (m) is the sum of the probabilities of all sequences of decreasing
+1 peaks with a total height decrease of m steps and sp1+(n) is the sum of
the probabilities of all sequences of increasing +1 peaks with a total height
increase of n steps. The sp1 − expression comes from the two terms on the
left of Eq. (16) and the sp1+ expression comes from the two terms on the
right of Eq. (16). Thus the probability of a random walk segment with a
sequence of decreasing +1 peaks and a total height decrease of m steps,
followed by a sequence of increasing +1 peaks and a total height increase
of n steps, is given by Eq. (17). Here the net change in height from one+2
peak to the next is n − m steps. The two quantities sp1+ and sp1 − in
Eq. (17) are calculated from the following expression

sp1(s)=xs
1Q1e

31+ C
s

k=1
f(k, 1) 1 C

.

t=1
f(s − k, t) Q t

1e
24 (18)

for s \ 1. When x1=p1, Eq. (18) is equal to sp1+(s) and when x1=q1,
Eq. (18) is equal to sp1 − (s). The first term inside the brackets of Eq. (18)
(i.e., unity) covers the case where there are only two peaks in the segment
and all the s excess steps are located on the second peak. The double sums
in Eq. (18) cover the cases where there are three or more peaks in the
segment, with k excess steps on the second peak and s − k excess steps
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distributed on the remaining peak(s). The following relation is useful in
evaluating Eq. (18)

C
.

t=1
f(s, t) x t=

x
s!

d s

dx s
5 C

.

t=1
x t+s − 16=x 5 1

1 − x
6 s+1

(19)

for s \ 0. We then obtain the relationships

sp1+(s)=p s
1
5 1

1 − Q1e

6 s

Q1e (20)

sp1 − (s)=q s
1
5 1

1 − Q1e

6 s

Q1e (21)

We are now in a position to evaluate Q2e, the probability that a +2 peak
has the same height as the +2 peak immediately preceding it

Q2e= C
.

m=1
sp1 − (m) sp1+(m)=

(1 − p2)(1 − q2)
1 − p2q2

(22)

where

p2=p1
5 1

1 − Q1e

6 (23)

q2=q1
5 1

1 − Q1e

6 (24)

(1 − p2)(1 − q2)=p2q2Q2
1e (25)

If by Q2+ we represent the probability that the immediately succeeding
second order peak is higher than the preceding second order peak, then

Q2+= C
.

m=1
C
.

n=m+1
sp1 − (m) sp1+(n)=5 p2

1 − p2

6 Q2e (26)

In this case the increasing part of the segment is always higher than the
decreasing part and the shortest declining segment has a height of minus
one step. Finally, let the symbol Q2 − represent the probability that the
immediately succeeding second order peak is lower than the preceding
second order peak

Q2 − = C
.

m=2
C

m − 1

n=1
sp1 − (m) sp1+(n)=5 q2

1 − q2

6 Q2e (27)
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where the increasing part of the segment is always shorter than the
decreasing part (i.e., n < m).

Notice that Eqs. (22), (26), and (27) are very similar to Eqs. (9)
through (11) in Section 3. The functional form of the two sets of equations
is the same; only the magnitudes of the variables are altered slightly. This is
the source of the fractal self-similarity of the +1 and +2 waves in the
walk. The fraction of second order wave tops that are also third order tops
is derived in exactly the same way as the fraction in Eq. (12), but using Q2e,
Q2+ and Q2 − instead of Q1e, Q1+ and Q1 − . We find this fraction to be

b−1
3 =Q2+Q2 −

5 1
1 − Q2e

6 (28)

For p1=q1=1/2, the ratios of 1/7, 3/7 and 3/7 are the respective magni-
tudes for Q2e, Q2+ and Q2 − and b−1

3 =21/98. So on average, one out of
every 4.667 second order peaks is a third order peak (i.e., l3=4.667 second
order peaks or 112.0 steps).

6. EVALUATION OF THE WAVELENGTHS OF THE HIGHER ORDER

RANDOM MODES

The evaluation of the fraction of third order peaks that are also fourth
order peaks requires the exact repetition of the process carried out in
Section 5. Only the nature of the pŒs and qŒs needs to be changed. Likewise
the fraction of fourth order waves that are also fifth order waves, repeats
exactly the calculations of Section 5, again with only the nature of the pŒs
and qŒs changing. This is true for all higher order waves. Eqs. (29) through
(34) give an exact description of this repeating pattern in terms of the wave
order parameter, n.

pn=pn − 1
5 1

1 − Qn − 1e

6 (29)

qn=qn − 1
5 1

1 − Qn − 1e

6 (30)

Qne=
(1 − pn)(1 − qn)

1 − pnqn
(31)

Qn+=5 pn

1 − pn

6 Qne (32)

Qn − =5 qn

1 − qn

6 Qne (33)
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for n \ 1. Eqs. (29) through (33) are the generalizations of Eqs. (9) through
(11), as well as Eqs. (22), (26), and (27). The general expression for the b
factor is

b−1
n+1=Qn+Qn −

5 1
1 − Qne

6=l−1
n+1 (34)

for n \ 1. For the special case of a random walk with p1=q1=1/2, the
following relationships hold

pn=1 − (1/2)n (35)

qn=1 − (1/2)n (36)

7. ANALYSIS OF RESULTS

It is useful to tabulate some of the quantities appearing in the preced-
ing analytical theory for given values of p1=1 − q1. In particular, the
symmetrical case, p1=q1=1/2, is of interest. Table I presents such a
tabulation for this case. As for experiments, we have performed exhaustive
simulations of random walks; both true gaussian walks and walks having a
constant step length. At each step, the step’s direction and (for a GRW)
the step’s length were determined by an appropriate random number
generator. Several different generators were used, and all led to the same
overall result. In addition, the random number generator was replaced by
published data on radioactive decay. This also led to the same result.

For generating uniform pseudo-random numbers between 0.0 and 1.0
on a computer, the experiments described in the tables of this paper used

Table I. Listing of the Calculated Values of Eq. (29) Through (34) for Random Wave

Orders from n=1 to 8 Where p1=q1=1/2. The b Factors Are Dimensionless Ratios

and the Rest of the Entries Are Probabilities

n pn qn Qne Qn+ Qn − bn+1

1 1/2 1/2 1/3 1/3 1/3 6
2 3/4 3/4 1/7 3/7 3/7 98/21
3 7/8 7/8 1/15 7/15 7/15 210/49
4 15/16 15/16 1/31 15/31 15/31 930/225
5 31/32 31/32 1/63 31/63 31/63 3906/961
6 63/64 63/64 1/127 63/127 63/127 16002/3969
7 127/128 127/128 1/255 127/255 127/255 64770/16129
8 255/256 255/256 1/511 255/511 255/511 260610/65025
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an algorithm called the Mersenne Twister. (8) This uniform distribution was
then converted to a gaussian distributed random variable for the GRW
experiments using an algorithm by D. Knuth. (9, 10) We also used uniform
random numbers determined experimentally from a radioactive decay
process which were published on an internet site by J. Walker. (11)

Table II shows a comparison between values of bn, evaluated theoret-
ically, using Eqs. (29) through (34), and values obtained experimentally (via
a computer simulation with the Mersenne Twister). The results were
averaged over 2570 separate walks each of which contained over 25 million
individual steps. The values are for a walk having a constant step length
and p1=q1=1/2. Quantities are listed out to the eighth order random
wave. Clearly, the agreement between theory and experiment is excellent.
Moreover, we see that, as the wave order increases, bn converges on the
constant 4.0. Thus, confirming that as the wave order is increased, this
scaling property of the random modes becomes identical with that of the
Weierstrass series modes.

This raises the question of why bn is different for low order waves. The
answer may be discerned, at least partially, from an examination of the
simulations for true GRW’s where the step length is not constant. In these
simulations bn=4, independent of the wave order. In the case of constant
step length, coarse graining increases with increasing wave order and the
probability of two succeeding waves having exactly the same height
decreases. Ultimately, a highly coarse grained wave will relegate a small
constant step length to the continuum. The probability of two waves
having exactly the same height will approach zero and the phenomenon
will approach that of a true GRW. Table III compares the theoretical and
experimental wavelengths, measured in units of step length. Again, the
agreement between theory and experiment is excellent.

Table II. Comparison of the Theoretical and Experimental

Values of bn for Random Wave Orders from n=2 to 8 Where

p1=q1=1/2. The b Factors Are, of Course, Dimensionless

Ratios

b factor Calculated Experimental

b2 6.00000 5.99991
b3 4.66667 4.66667
b4 4.28571 4.28583
b5 4.13333 4.13318
b6 4.06452 4.06537
b7 4.03175 4.03402
b8 4.01575 4.02440
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Table III. Comparison of the Theoretical and Experimental

Values of ln for Random Wave Orders n=1 to 8 Where

p1=q1=1/2. The Wave Lengths Are Expressed in Units of

Steps

Calculated Experimental
n wavelength wavelength

1 4.0 4.0000
2 24.0 23.9996
3 112.0 111.9997
4 480.0 479.9900
5 1984.0 1984.3260
6 8064.0 8065.3169
7 32512.0 32543.8887
8 130560.0 131110.6758

The wave amplitude can be defined as the height of a peak measured
from the bottom of the preceding valley. However, even for the walk of
constant step length, we do not yet have a complete analytical theory for
the average amplitude, beyond a result for the first order wave. On the
other hand, some experimental values are available. Table IV lists experi-
mental amplitudes, in units of step length, out to the eighth order wave, as
well as the amplitude ratios of successive waves. The single analytical result
for the first order wave amplitude is 2.0, and for that case, agreement
between experiment and theory is perfect. At this point we can return to
Eq. (4) in which 1

a=g−H where 0 < H < 1. Thus the amplitude (1
a)

m of the
mth mode in Eq. (4) is given by

Ām=(b−H)m (37)

In view of the similarity of the scaling properties of the wavelengths of
the Weierstrass and random modes, it now becomes of interest to see
whether, also, the amplitudes of the random modes will scale like those of
the Weierstrass modes. In a study of this question, we are limited to the
experimental data since no analytical theory yet exists for the amplitude.
Examination of the data in Table IV shows that the experimental ampli-
tude goes as An % 2n, at least as far as the higher order waves are con-
cerned. This relationship could be expressed as

A=(bH)n (38)

with b=4.0 and H=1/2 (parameters that would also fit the demands of
the Weierstrass modes). With these values for b and H, the quantity in the
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Table IV. Listing of Experimental Amplitudes and Experimental

Amplitude Ratios for Random Wave Orders n=1 to 8 Where

p1=q1=1/2. The Wave Amplitude Is Expressed in Units of Steps.

The Wave Amplitude Ratios Are Dimensionless

Experimental Experimental
n wave amp. amp. ratio

1 2.0000
2 5.7878 2.8939
3 13.4617 2.3259
4 28.8187 2.1408
5 59.5283 2.0675
6 120.9639 2.0320
7 243.6485 2.0142
8 489.6018 2.0095

parentheses of Eq. (38) is 2 as Table IV requires. Of course, the correspon-
dence is only approximate for the lower order modes (as was the case for
the wavelength), but again, Table IV refers to a walk with constant step
length and the simulative data for the GRW is free of this defect. For a
GRW the first order wave amplitude is 2.0 and the amplitude for each
succeeding mode is twice the amount of the previous mode’s amplitude.
This result has been verified experimentally.

It has been mentioned that when scaling a GRW according to Eq. (2),
certain values of the parameter n are preferred because they remove one or
more of the fastest modes while leaving the remaining random modes
largely unaffected. This is demonstrated in Table V where the results of
random mode analysis are shown for a GRW containing 1.2 million steps.
The same GRW was analyzed with n=1, 4 and 16 (i.e., taking every step,
every fourth step and every sixteenth step in the GRW). The top entry in
each column is the value of n. The next entry down is the number of first
order cycles in the scaled GRW, the entry just below that is the number of
second order cycles, and so on. It is easy to see that changing n from 1 to 4
removes the 299031 cycles of the first order random mode in the GRW
(with n=1 and l1=4 steps). With the larger step size there are now 75178
cycles for the first order random mode (n=4 and l1=4n steps) which is
essentially the same as the number of second order waves in the original
GRW (n=1 and l2=16 steps). Increasing n from 4 to 16 removes this
mode as well, but still leaves the remaining random modes essentially
unchanged. Thus this GRW is systematically ‘‘coarse grained ’’ in the
manner of RN theory.
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Table V. Listing of the Number of Random Waves of All

Orders Found in a 1.2 Million Step GRW Using Three

Values of the Scaling Parameter n from Eq. (2). The Top

Entry in Each Column Is the Value of n. The First Non-Blank

Entry Below n Is the Number of First Order Waves Found in

the GRW. The Second Non-Blank Entry Is the Number of

Second Order Waves Found in the GRW, etc. The Table

Illustrates How for Certain Preferred Values of n, the

Increasing Step Size Eliminates the Fastest Random

Mode(s) While at the same Time Leaving the Remaining

Random Modes Almost Unchanged

n=1 n=4 n=16

299031
74469 75178
18489 18722 18761
4626 4657 4677
1153 1154 1170
291 294 300
69 69 69
20 18 17
6 5 5

In summary, we have demonstrated that there are well defined random
modes associated with a random walk. We have given a simple method for
identifying these and we have derived their structure and properties from
the basic mathematics governing a random walk. We have shown that the
scaling properties of the fundamental modes of a GRW are identical to
those of a Weierstrass mode. To a degree, this is remarkable, especially
since the path of the Weierstrass function is fully determined while that of
the GRW is random. It should be indicated that there exists a considerable
literature (12) on the relation between a gaussian-like process and a Weierstrass-
like function, but the identification and quantification of the random
modes discussed in this paper does not seem to have been accomplished.
There are several possible applications of such fundamental random modes
and these can be developed in following papers. Also, it is of interest to see
if such modes can be found in quasi-random processes, like the stock
market, in which correlation may play a role. We leave these matters to
later papers.
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